Supporting information of

Dissolution and nano and micro particlates generation behavior of Be ores in synthetic lung fluid (SLF) using FIFFF-ICP-MS

The different incidences of CBD cases found by a particular Be processing company (Wambath et al, 2008)

At facility A, a beryllium mine and ore processing mill, one person had ever been detected with CBD out of 360 persons who have worked there. At facility B, a beryllium oxide ceramics manufacturing facility with a similar population exposure profile for beryllium (figure S1), the rate was 17/709, a difference that was statistically significant (Deubner 2001). Furthermore, the person with CBD at facility A had worked 10 years in facility C, a large complex beryllium materials manufacturing facility with much higher air levels (figure S1) and a rate of CBD comparable to facility B, leaving the exposure source for this case of CBD ambiguous. For further comparison, a fourth facility (D), a copper-beryllium alloy strip rolling and wire drawing mill with a much lower air level profile, has also detected one case of clinical CBD and also surveillance CBD.

Details of the material accessible in the Be processing facilities described above:

Particle exposure in the mine and mill occurs during the processes of preparation of two ores, imported beryl (aluminum beryllium silicate) and locally mined bertrandite (beryllium silicate), extraction of beryllium with acid, and of the precipitation of beryllium hydroxide. The bertrandite ore body at the open pit mine is exposed by contractor removal of overburden. Workers scoop up the soft volcanic ash ore with a bulldozer and front end loader and move it to piles. Contractors load from the piles into trailers, tow the trailers to the mill and discharge the ore. At the mill following crushing of large rocks, the ore is ball milled to a powder and leached with hot sulfuric acid. Therefore exposure occurs to beryllium ore dust produced by moving and pulverization without chemical alteration. The beryl process is more complex, the rocky ore being hand sorted to remove extraneous materials, and then loaded in an arc furnace, where it is melted and then poured into water to form a glassy frit. The frit is ground and heat treated prior to being leached with hot sulfuric acid. Workers are therefore potentially exposed to beryl and bertrandite ore dust during sorting and moving, and to modified ore as frit and heat treated frit.

Simulated lung fluid

Synthetic lung fluid (SLF) consists of Gamble's solution (table S2) adjusted with (0.1 normal sulfuric acid) to a pH of 7.2 to represent extra cellular fluid or to pH 4.5 to represent macrophage lysosome fluid.

Tables and Figures

Species	Concentration (mM)
Na ⁺	150.7
Ca^+	0.197
$\mathrm{NH_4}^+$	10
H ₂ CNH ₂ H (glycine)	5.99
H ₂ CO (formaldehyde) methanol solution	67
Cl	126.4
SO4 ²⁻	0.5
HCO ₃ ⁻	27
$HPO_4^{2-}, H_2PO_4^{}$	1.2
$COH(CH_2)_2(COO)_3^{3-}$ (citrate)	0.2
Bubbled with pure CO ₂ for 15 minutes	

Table S1: Composition of simulated lung fluid (SLF) (Gamble's solution) in mM

parameters	Qinject	t _{inject}	t _{trans}	t _{elut}	Q _{tip}	Q _{focus}	Q _{cross}	Q _{detector}	Q _{slot}		
	In day 0 to day 64										
	Focus Step										
Units	ml/min	min	min	min	ml/min	ml/min	ml/min	ml/min	ml/min		
	0.1	5	1	N/A	0.1	3.9	1	0.4	2.6		
	Elution Step										
stage 1				7	4		1	0.4	2.6		
stage 2	N/A	N/A	N/A	5	3.7	N/A	0.7	0.4	2.6		
stage 3				5	3.7		0.7	0.4	2.6		
Rinse Step											
	N/A	N/A	N/A	5	3	0	0	0.4	2.6		
	On day 149										
				Focus S	Step						
units	ml/min	min	min	min	ml/min	ml/min	ml/min	ml/min	ml/min		
	0.15	8	1	N/A	0.15	2.05	1.2	0.4	0.6		
Elution Step											
stage 1	N/A	N/A N/A	N/A	45	2.2-1.3	N/A	1.2-0.3	0.4	0.6		
stage 2	1N/A	1N/A		3	1.3-0		0.3-0	0.4	0.6		
Rinse Step											
	N/A	N/A	N/A	5	1	0	0	0.4	0.6		

Table S2. CC-ICP-MS operation conditions

OPERATION CONDITIONS						
RF power (W)	1550					
Plasma gas flowrate (L/min)	15					
Hydrogen flowrate (mL/min)	2.5					
Helium flowrate (mL/min)	2.5					
Carrier flowrate (L/min)	0.8					
Make-up gas (L/min)	0.2					
Auxiliary gas (L/min)	0.9					
Sample flowrate (mL/min)	0.3					
Acquisition time per isotope (sec)	0.05					
Repetition	3					
Total acquisition time for 19 isotopes (sec)	2.85					
Total running time (sec)	1500 - 1860					
Tuning solution:						
133 Cs mean (cps) wth H ₂ in collision cell	34,000					
% RSD	< 3%					
Sample nebulizer tubing:						
Material	Tygon					
Internal diameter (mm)	1.02					
AF4 carrier tubing:						
Material	Peek					
Internal diameter (mm)	0.25					

Table S3: Summaries of FFF operation conditions for different size range

samples	рН	Day 128]	R _{ICP-MS} = no CF FFF /				
		Bulk ICP-MS	CF FFF	< 3 kDa	no CF FFF	$R_{FFF} = CF / no CF - 3KDa$	Bulk ICP-MS		
Al									
BeO		0.083	0.003	< 0.004	0.002	> 153	2.832		
Be(OH)2		< 0.02	0.004	< 0.004	0.009	N/A	N/A		
FRIT	7.2	0.835	0.029	0.011	0.044	87.14	5.222		
BERT	1.2	1.332	0.101	0.021	0.195	57.88	14.631		
BERYL		1.167	0.041	0.027	0.066	106.85	5.642		
SiO2		< 0.02	0.011	N/A	0.032	> 34.37	N/A		
BeO		< 0.02	0.005	< 0.004	0.001	N/A	N/A		
Be(OH) ₂		< 0.02	0.002	< 0.004	N/A	N/A	N/A		
FRIT	4.5	5.567	0.405	0.050	0.500	90.15	8.985		
BERT		1.214	0.031	0.021	0.053	96.30	4.406		
BERYL		1.707	0.091	0.025	0.505	18.93	29.610		
SiO2]	0.140	0.060	N/A	0.092	> 65.2	65.860		

Table S4 The Al mass balance analysis results

N/A represents either the values are not available, such as Al concentrations in suspensions samples; or not accessible, such as in R_{FFF} / R_{ICP-MS} sample suspensions.

				concen					
samples	nII	Day 128			R _{ICP-MS} = no CF FFF /				
	рН	Bulk ICP-MS	CF FFF	< 3 kDa	no CF FFF	$R_{FFF} = CF / no CF - 3KDa$	Bulk ICP-MS		
Si									
BeO		< 1.5	0.133	< 0.04	0.150	> 88.4	N/A		
Be(OH)2		< 1.5	0.145	< 0.04	0.238	> 164.3	N/A		
FRIT		7.268	0.209	0.119	0.381	79.634	5.249		
BERT	7.2	4.745	0.171	0.107	0.368	65.536	7.749		
BERYL		4.185	0.147	0.120	0.162	352	3.859		
SiO2		36.816	0.317	N/A	0.012	> 2641.67	0.032		
BeO		< 1.5	0.156	< 0.04	0.032	> 487.5	N/A		
Be(OH) ₂		< 1.5	0.103	< 0.04	N/A	N/A	N/A		
FRIT	4.5	34.188	0.722	0.411	0.951	133.764	2.783		
BERT	4.5	4.065	0.259	0.082	0.229	176.204	5.624		
BERYL		2.462	0.053	0.105	0.163	90.732	6.626		
SiO2		5.449	0.281	N/A	0.382	> 73.56	7.003		

Table S5 The Si mass balance analysis results

N/A represents either the values are not available, such as Si concentrations in suspensions samples; or not accessible, such as in R_{FFF} / R_{ICP-MS} sample suspensions.

Figure captions

Figure S1: Population exposure for four facilities, mean exposure values by percentile of population exposed at that level or lower

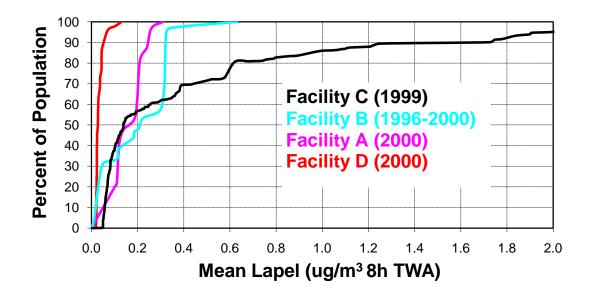

Figure S2: Recovery test of Be, Al and Si in Amicon Ultra 3-4

Figure S3: Concentrations of Al < 450 nm fraction in various ore-SLF suspensions at two pH values: 4.5 (top) and 7.2 (bottom). Samples were collected on day 0, 2, 8, 16, 32, 64 and 128 and measured with bulk ICP-MS. The missing date points represent Al concentration were below the detection limit of ICP-MS. Data are from measurements for duplicate samples.

Figure S4: Concentrations of Si < 450 nm fraction in various ore-SLF suspensions at two pH values: 4.5 (top) and 7.2 (bottom). Samples were collected on day 0, 2, 8, 16, 32, 64 and 128 and measured with bulk ICP-MS. The missing date points represent Al concentration were below the detection limit of ICP-MS. Data are from measurements for duplicate samples.

Population Exposure Profile by Facility

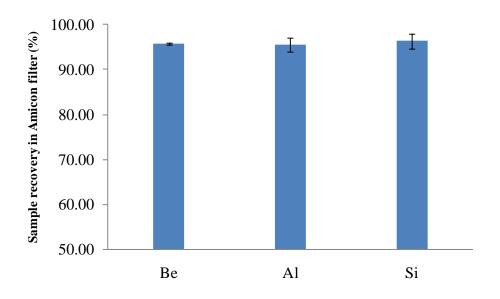
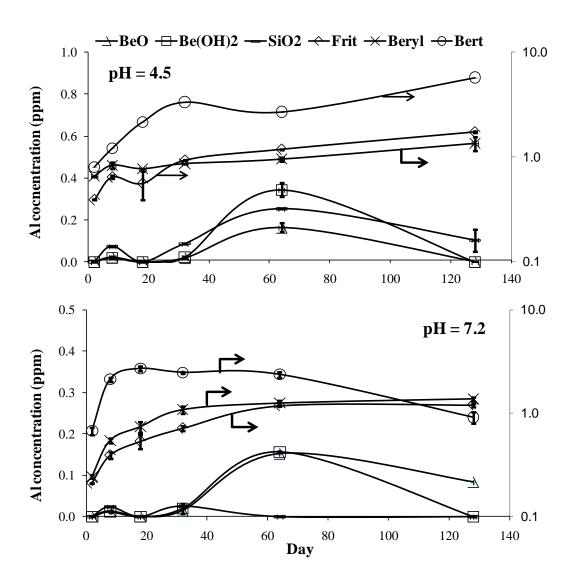
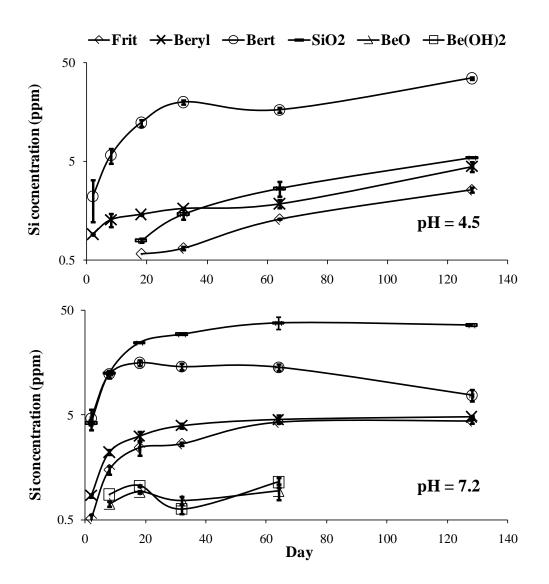




Figure S3

