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Porosity-Dependent Sherwood Number at No Fluid Flow Limit 

Following the analysis for the isolated sphere model by Sherwood et al. (p215),1 the 

Sherwood number for the Happel sphere-in-cell model is derived below for the limiting case of 

no fluid flow.  Under no fluid flow conditions, the mass transfer of small size colloids occurs 

only by molecular diffusion (when the small effect of gravity is neglected).  Suppose a steady-

state will be established within the Happel model; the molal flux (N) through the spherical shell 

at radius r (r > ac) is then given by 

𝑁(4π𝑎𝑐2) = −𝐷(4π𝑟2) 𝑑𝐶
𝑑𝑟

,  (S1) 

where ac is the collector radius, D is the molecular diffusion coefficient, and C is the colloid 

concentration.  Re-arranging eq S1 and integration between the limits C = Ci at r = ac and C = C0 

at r = b (b is the radius of the Happel outer fluid shell) yields, 
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Note that the left-hand-side of eq S2 defines the Sherwood number, and for the Happel model, 

ac/b = γ = (1-ε)1/3, where ε is the porosity, so one obtains for the limiting case of no fluid flow 
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Derivation for ηD in eq 5 in the Main Text 

At low fluid velocity conditions and for diffusion-dominated regime, and neglecting the 

gravity, the particle flux for introduced colloids includes two contributions: convection and 

diffusion.  Following the analysis of Tien (p124-125),2 we now derive the expression for 

collector efficiency due to diffusion (ηD) when both convective and diffusive fluxes are taken 

into account.  First let us consider the case when surface interaction forces are absent so that the 

deposition of Brownian particles onto collector surfaces may be treated as a mass transfer 

process.  Let I denote the particle mass flux over a collector grain.  The Sherwood number (Nsh) 

for mass transfer is given by 
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where D is the diffusion coefficient, ∆C is the concentration difference that drives mass transfer 

process, and dc and S are the diameter and surface area of the collector grain, respectively.  The 

second equal sign in eq S4 holds if the grains are spherical.  The driving force for mass transfer 

may be taken as the difference between the bulk concentration (C0) and the colloid concentration 

at the fluid-grain interface.  For particle deposition without surface interaction forces, the 

interface concentration vanishes, so that ∆C ≈ C0. 

For the Happel model, the convective particle flux is given by πb2UC0, where b is the 

radius of the outer fluid envelope, U is the approach fluid velocity and C0 represents the bulk 

colloid concentration.  Let ND denote the molal flux through a spherical shell due only to 

molecular diffusion, the collector efficiency due to diffusion (ηD) is then given by 
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Equating the term I from eqs S4 and S5 yields 
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Note that NPe = Udc/D; and the term NDdc/(D∆C) in the denominator of eq S6 represents the 

Sherwood number due solely to molecular diffusion, which may be approximated by the 

Sherwood number for the limiting case of no fluid motion as derived in eq S3.  Since expressions 

for the Sherwood number are only available for the limiting case of no fluid flow (only natural 

molecular diffusion, eq S3) or convective flow when NPe > 70 (eq 2 in the main text), here we 

superimpose these expressions of limiting cases to approximate the general Sherwood number in 

the numerator of eq S6, which leads to 
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        (S7) 

where the relationships γ = ac/b = (1-ε)1/3 for the Happel model has been used.  From eq S7, one 

can see that when NPe = 0 (no fluid flow), ηD = 1.  However, eq S7 is not a monotonous function 

with respect to NPe (or particle size).  To ensure that ηD will not be greater than unity after 

incorporation of the effects of surface interaction (e.g., van der Waals interactions) or gravity, 

and to also ensure that the overall collector efficiency (η) (which sums over the contributions 

due to diffusion, interception and gravitational settling) does not go above unity, the final form 
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of eq S7 was slightly modified during the regression process of numerical simulation data, as 

shown in eq. 5 in the main text.  For instance, the denominator of eq S7 after regression 

modification became [8 + (1-γ)NPe
0.97], and this modification may slightly underestimate the 

predicted ηD values at high porosities when NPe approaches zero, as shown in Figure 4 in the 

main text; but this estimation of collector efficiency can be corrected from the asymptotes at the 

diffusion limit. 
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Figure S1. A two-dimensional representation of the hemispheres-in-cell model illustrating the 

differences in the outer fluid boundaries between our previous (blue) and current work (blue plus 

green).  The green represents a greater porosity than the blue in this depiction.  Two reasons for 

making this change: i) to obtain the convergence-divergence of flow streamlines around the 

grain-to-grain contact region (as demonstrated in Fig. 2 in the main text); and ii) to represent 

both saturated and unsaturated porous media, e.g., under unsaturated conditions a thin film exists 

on the grain surfaces distal to the grain to grain contact; whereas at the grain to grain contact 

exists a pendular ring of water.  The outer fluid boundary condition in both contexts is very 

similar (non-tangential stress). 
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