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ABSTRACT: In this work, we analyzed causes for a recently
noted shortcoming of filtration models, which is to predict
collector efficiencies greater than unity under low fluid velocity
conditions. For Eulerian flux approaches, both the underlying
mechanistic model and the correlation equation used to export
model results may contribute to this error. For particle
trajectory approaches, the error results solely from the
correlation equation, not from the underlying mechanistic
model, making correction a relatively simple endeavor.
Whereas a fitted saturation factor was recently used in a
correlation equation to try to force collector efficiencies to
remain below unity, we herein develop a different saturation
factor based on classic mass transfer relationships to extend the
applicability of our correlation equation to low fluid velocities.

1. INTRODUCTION

A collection of correlation equations now exist to predict the
collector efficiency (η) for colloidal retention in granular
porous media under the condition when colloid−collector
repulsion is absent (so-called favorable conditions).1−6 The
underlying models for developing these equations typically
involved particle trajectory simulation based on force/torque
balance2,5,6 or Eulerian flux analysis via solving the convective
diffusive equation3,4 within representative model geometries.
The purpose of these underlying mechanistic models is to
predict collector efficiency (η), which is defined as the ratio of
the number of colloids retained relative to the number of
colloids introduced into the representative unit cell, where the
unit cell represents porous media as an isolated sphere,1 or
Happel sphere-in-cell,2,3,6 or hemispheres-in-cell.5 By the above
definition, the value for η should never exceed unity.
The complexity of the mechanistic models warrants develop-

ment of correlation equations conditioned to the numerical
results, such that researchers can use the correlation equations
to obtain close approximations of the mechanistic numerical
results without utilizing the mechanistic models. Predictions
from correlation equations agree well (within a factor of 2) with
experimental results under favorable conditions (lacking
colloid−collector repulsion) for a wide range of environ-
mentally relevant parameters, e.g. colloid size (40 nm to 10 μm
in diameter), fluid velocity (1 × 10−6 to 1 × 10−3 m/s) and
porosity (0.25−0.5).1,3−6
However, it was shown that at very low fluid velocity (e.g.,

below 1 × 10−6 m/s) these correlation equations predict
collector efficiencies exceeding unity, especially for large or very

small sized colloids.6−8 Because predictions of η come from
correlation equations conditioned to results from mechanistic
models, the error in η under low velocity conditions may come
from two sources: (1) the correlation equations that
approximate the numerical results; specifically, the power law
dependence of existing correlation equations for η on Peclet
number or gravity number;6 or (2) the underlying numerical
models themselves; specifically, the constant colloid concen-
tration condition conventionally employed on the Happel
sphere-in-cell model’s outer fluid envelope.6,7 Nelson and
Ginn6 correctly pointed out some of the problems in applying
existing correlation equations at low fluid velocities, but the
distinction between the correlation equation predictions versus
the underlying mechanistic models as sources of this error
warrants clarification. Whereas these authors provided a
regressed correlation equation for η (the NG equation) that
was intended to correct the error of η above unity,6 the
modified NG equation still predicts η values exceeding unity for
certain parametric conditions (e.g., fluid velocity <1 × 10−7 m/
s, porosity <0.30, colloid size <50 nm), especially at relatively
low porosities, as demonstrated in Figure 1. The goal of this
article is to distinguish the above two sources of error in
predicting η under low fluid velocity conditions, and to extend
the correction offered by Nelson and Ginn.6
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2. METHOD
Modified Hemisphere-in-Cell Model Geometry and

Flow Field. The hemisphere-in-cell unit model geometry is
herein used, since this model was shown to fall within the range
of other existing unit cell predictions for colloid retention under
favorable conditions. However, the unit cell flow field was
slightly modified relative to that described in Ma et al.5

Specifically, the outer fluid envelope was modified to express a
shape similar to pendular water to match convergence−
divergence of fluid trajectories around grain to grain contacts
observed in saturated and unsaturated micromodels (Figure 2),
which was not captured in the previous flow field (e.g., Ma et
al.9). The differences in the outer fluid boundaries between our
previous and current unit cell models are further illustrated in
Figure S1 in the Supporting Information.
Computational meshes for the modified hemisphere model

geometry were constructed and fluid flow field within the
meshes was obtained by numerically simulating the steady-state
Navier−Stokes equation under laminar flow hydrodynamics
using the computational fluid dynamics packages STAR-CD
and STAR-ccm+ (details on mesh construction and numerical
flow field simulation were provided in our previous works5,10).
The modified outer fluid envelope geometry around grain to
grain contact regions (Figure 2) was constructed with fine
subsurface prism layers to approximate nontangential stress
boundary conditions imposed in classical unit cell such as the
Happel Sphere-in-cell.2,11

Particle Trajectory Analysis. Trajectories of colloids
within the hemispheres-in-cell model were simulated based
on classical Langevin equation12

∑+ * = = + + +m m
u
t

F F F F F( )
d
d i COLL D G B (1)

where m is the mass of colloidal particle, m* is the virtual mass
(approximated with the mass of one-half of the fluid displaced
by the colloidal particle, which reflects the effect of fluid on a
moving particle, and which is to increase the effective mass of
the particle), and u is the particle velocity vector. The forces
acting on the particle include colloidal forces (FCOLL), fluid drag

(FD), gravity (FG), and Brownian forces (FB). Since this current
work concerned only favorable conditions (lacking colloid−
collector repulsion), only van der Waals forces were included in
the calculation of colloidal forces. Expressions for these forces
were provided in detail in previous works.5,10

The coupling of particle trajectory analysis with the
computational flow field and numerical simulation procedures
was described in detail in previous work.5,10 Briefly, colloids
were introduced randomly to a plane upstream of the collector
that was normal to the superficial flow to the collector (Figure
2). All the forces acting on the colloid were integrated
according to eq 1 to obtain the velocity of the colloid. Upon
resolving the particle velocity vector, the updated particle
position was determined from first-order integration (dx/dt =
u), where x is the particle position vector. This process was
repeated until the particle was either attached to the collector
surfaces (e.g., came within 1 nm colloid−surface separation
distances) or exited the system. Simulation parameters and
conditions were chosen based on our typical column
experimental conditions and are summerized in Table 1. On
average, approximately 1000−2000 colloidal trajectories were
simulated for each condition to obtain a statistically meaningful
and stable value for collector efficiency (η).

3. RESULTS AND DICUSSION
3.1. Testing the Modified Flow Field for Hemispheres-

in-Cell Model. Simulated collector efficiencies within the
modified hemisphere model (or modified fluid flow field)
under favorable conditions were slightly larger than, but in
general agreed (within a factor of 2) with, those predicted from
the previous version by Ma et al.5 (e.g., represented by the
MFPJ equation), as shown in Figure 3. The slight differences in
η between these two model versions reflected the changes in
model geometry and resulting fluid flow field. The trajectory
simulations in either flow field did not yield η exceeding unity

Figure 1. Predicted collector efficiencies from the correlation equation
recently proposed by Nelson and Ginn6 (the NG equation) which are
shown to still exceed unity under certain conditions (highlighted with
orange oval region) using colloids of two different densities (1.055 and
4 g/cm3), e.g., fluid velocity <1 × 10−7 m/s, porosity <0.30, colloid
size <50 nm. The errors of exceeding unity are more pronounced at
relatively low porosities (e.g., 0.25). Figure 2. The modified hemispheres-in-cell model geometry, where

the outer fluid envelope represents pendular water to match
convergence−divergence of fluid trajectories within grain to grain
contacts observed in micromodels. The flow direction, as indicated by
green arrow, is downward (with gravity) and representative flow
streamlines are shown in light blue.
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under any conditions. Simulated collector efficiencies from the
modified hemispheres-in-cell model also fell within the
approximately factor-of-two range of differences among the
other existing correlation equations under favorable conditions,
a range which has been well demonstrated to correspond to the
range in experimental observations.1,3−6 We stress here that it is
not our intention to claim superiority for any particular
correlation equation; rather, the purpose of this paper is to
diagnose the causes for η overpredictions (i.e., greater than
unity) among existing correlation equations under relatively

low fluid velocity conditions, and after briefly establishing the
modified hemispheres-in-cell model to be as fit a starting point
as any other existing models, to extend the proposed strategy
for correcting the errors. Notably for this context (favorable
condition), simulations could just as well have been performed
using either the hemispheres-in-cell or Happel sphere-in-cell
geometries to the same effect.

3.2. Causes of Collector Efficiency Predictions Greater
than Unity. Existing correlation equations, including the MPFJ
correlation equation derived from the hemispheres-in-cell
model5 and the recently proposed NG correlation equation
from the Happel sphere-in-cell model,6 have been demon-
strated to predict η values exceeding unity when fluid velocities
were below 1 × 10−6 m/s (e.g., Figure 2 in Nelson and Ginn6

and Figure 1 above). However, in the case of MPFJ, this error
derives from the correlation equation, rather than the
underlying mechanistic particle trajectory model, as demon-
strated by the fact that η predictions from this model did not
exceed unity, as shown for the updated flow field (Figure 4).

Table 1. Parameters Used in Lagrangian Trajectory
Simulations

parameter value

collector diameter, dc 510 μm
particle diameter, dp 10 nm to 10 μm
porosity, ε 0.25, 0.37a

pore water velocity, vp 0.04, 0.4, 4 m/day
particle density, ρp 1055, 4000 kg/m3

fluid density, ρf 998 kg/m3

fluid viscosity, μ 9.98 × 10−4 kg/(m·s)
Hamaker constant, H 3.84 × 10−21 J
absolute temperature, T 298.2 K

aThe selected values for porosity bracket the range typical of granular
media.

Figure 3. Simulated collector efficiencies (red open circles) from the
modified hemispheres-in-cell model shown in Figure 2 under favorable
conditions as a function of colloid size at a representative pore water
velocity of 0.4 m/day for (a) porosity 0.37 and (b) porosity 0.25.
Simulated η values (symbols) were compared to predictions from
existing correlation equations (lines), as developed by Rajagopalan and
Ties2 (the RT equation), Tufenkji and Elimelech3 (the TE equation),
Long and Hilpert4 (the LH equation), Ma et al.5 (the MPFJ equation),
and Nelson and Ginn6 (the NG equation).

Figure 4. Simulated collector efficiencies (discrete symbols) from
particle trajectory model within the modified hemisphere geometry as
a function of colloid size under favorable conditions for (a) porosity
0.37 and (b) porosity 0.25. For each porosity, three representative
pore water velocity (0.04, 0.4, and 4 m/day) and two particle densities
(1.055 and 4 g/cm3) were simulated. The lines (brown, blue, green,
and red) were fitted η values from eq 4. The two asymptotes due
solely to diffusion (dashed purple line) or gravitational settling (solid
black line) are also shown.
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The mechanistic particle trajectory models underlying the
RT correlation equation2 and the NG correlation equation6 are
also not expected to yield collector efficiencies exceeding unity.
Particle trajectory models in general examine the fate of
individual colloids in the model geometry and flow field to
determine whether the colloid exits the system or is retained on
the collector. There is no mechanism in these models to predict
that more colloids will be retained than were introduced to the
system. Hence, predictions of η exceeding unity from the RT,
MPFJ, and NG correlation equations arise from the correlation
equations themselves, rather than the underlying mechanistic
trajectory models.
In contrast, the Eulerian flux modeling approach7 which

underlies, for example, the TE correlation equation,3 may
produce η greater than unity. Song and Elimelech7 concluded
that overprediction of η (above unity) at low Peclet number
resulted from the constant colloid concentration condition
typically prescribed on the Happel sphere-in-cell model’s outer
fluid envelope when implementing the flux analysis approach.
There were two reasons for this conclusion: (1) the constant
concentration boundary condition holds only when the
diffusion boundary layer is much smaller than the outer fluid
envelope thickness as suggested by Ruckenstein,13 whereas, this
assumption is valid only at relatively large Peclet numbers; (2)
the concentration on the lower half of the Happel outer
boundary should be smaller than the approaching concen-
tration on the upper half due to colloid retention onto the
collector surface. Song and Elimelech7 adopted a modified
boundary (so-called Danckwert’s condition) that allowed
colloids to come only from the upper half of the Happer
fluid boundary and demonstrated that the simulation results
with this new boundary did not overestimate η at low Peclet
numbers.
An additional issue; however, is that whereas collector

efficiency is defined as the ratio of retained to introduced
colloids, the number of introduced colloids is commonly taken
to be the particle flux passing through a given area by
convection.3,7,14 Strictly speaking, this approximation for
introduced colloids is not correct, since the particle flux
passing through an area has three contributions: convection,
diffusion, and gravitational settling. In most cases (e.g., for
relatively large Peclet numbers), the fluxes due to diffusion and
settling are negligible relative to the convective flux. However,
for very low velocity, the flux contributions due to diffusion or
settling may not be negligible. For instance, in the limiting case
of no fluid motion, for small colloids, particle flux across a given
area is by diffusion only. If introduced colloids are defined only
by convective flux (zero under these conditions), η would
approach infinity, which clearly is incorrect. It is likely that this
approximation of convective flux contributed to overprediction
of η in Song and Elimelech7 since the diffusive flux would have
predominated for their particles (25 nm radius) at the very low
fluid velocities they examined. The same issue applies to large,
or high density, colloids at low fluid velocity, since particle flux
from gravitational settling (as opposed to convection) may
predominate under these conditions. Long and Hilpert4

employed Eulerian flux analysis in their simulations of
Brownian colloid transport in packed identical spheres
(diffusion-dominated regime). Their model did not employ a
constant concentration boundary, nor did it approximate
particle flux as being solely convective; therefore, we would
not expect their model to produce η exceeding unity, even
under low fluid flow conditions.

To summarize (Table 2), among the mechanistic models
underlying correlation equations, the particle trajectory models
do not yield η exceeding unity. Hence, predictions of
superunity η values by correlation equations regressed to
particle trajectory models (e.g., RT, MPFJ, and NG) must
result from the correlation equations themselves, rather than
the underlying mechanistic models. In contrast, Eulerian flux
models may produce superunity η values, when a constant
concentration boundary condition is employed, and/or when
the total particle flux is approximated as the convective flux.
Hence prediction of superunity η values by correlation
equations regressed to Eulerian flux models (e.g., TE) may
arise from both the underlying mechanistic model and the
correlation equation used to export the mechanistic model
results. Notably, the LH correlation equation borrows its
interception and gravitational settling terms directly from the
TE correlation equation, making it potentially susceptible to
correlation equation errors that we will discuss next.

3.3. Limitations of Existing Correlation Equations. All
existing correlation equations for η contain a power law
dependence on Peclet number (e.g., ∼ NPe

−2/3) for the diffusion
term.1−6 It is this term that causes predicted η values to exceed
unity at small Peclet numbers (NPe = Udc/DBM, where U is the
approach fluid velocity, dc is the collector diameter, and DBM is
the Brownian diffusion coefficient, equal to kBT/(6πμap), where
kB is the Boltzmann constant, T is the absolute temperature, μ
is the fluid viscosity, and ap is the colloid radius). This power
law dependence of η on NPe originated from the power law
dependence of the Sherwood number (NSh) on NPe derived
from mass transfer theory in the single sphere model15,16 or in
the Happel sphere-in-cell model.13,17 For example, in the
Happel model, the Sherwood number, which represents the
ratio of convective relative to diffusive mass transport (defined
as dcKc/DBM, where Kc is the mass transfer coefficient), is
related to the Peclet number as:13,17

= >N A N N, when 70sh s Pe Pe
1/3 1/3

(2)

where As = 2(1 − γ5)/(2 − 3γ + 3γ5 − 2γ6), with γ = (1 − ε)1/3,
where ε is the porosity. The power law dependence of the
diffusion term in η on NPe (i.e., η ∝ NPe

−2/3) can then be
derived from eq 2, as described in detail by Tien (pp 124−
125).14 However, earlier studies16−18 stated that eq 2 (or in
general, Nsh ∝ NPe

1/3) was valid only when NPe > 70, and NPe <
10 000. At very low Peclet number, the Sherwood number
becomes independent of NPe, approaching an asymptotic value
that is dependent upon porosity;16,17 the porosity-dependent
asympotes for Nsh for the limiting case of no fluid flow will be
shown below shortly.
Since the power law relationship η ∝ NPe

−2/3 in existing
correlation equations was derived based on eq 2, the underlying
condition NPe > 70 should also apply to these equations.
Notably, the low fluid velocity conditions examined by Nelson
and Ginn6 that resulted in superunity η values corresponded to
NPe < 70. Nelson and Ginn6 correctly pointed out the problem
in applying existing correlation equations at low fluid velocities.
However, their correction was done by maintaining the same
power law dependence (η ∝ NPe

−2/3) for the diffusion term, but
moderating η with the following fitted saturation expressions
for diffusion and gravitation, respectively: ((NPe)/(NPe +
16))0.75 and ((NGi)/(NGi + 0.9)), where NGi = 1/(NG + 1),
NG is the gravity number (= 2ap

2(ρp − ρf)g/(9μU), ρp and ρf
are colloid and fluid density, respectively; g is the acceleration
due to gravity). As illustrated in Figure 1, this correction still

Environmental Science & Technology Article

dx.doi.org/10.1021/es304753r | Environ. Sci. Technol. 2013, 47, 2272−22782275



leads the NG correlation equation6 to predict η values
exceeding unity for certain parametric conditions as listed in
their Table 2 (e.g., fluid velocity <5 × 10−7 m/s, porosity <0.30,
colloid size <50 nm), demonstrating that it is very difficult to
obtain a functional correlation equation for all conditions.

3.4. Constraining Power Law Dependence Using Mass
Transfer Theory to Predict η. Developing a correlation
equation applicable to convective and nonconvective conditions
for a range of porous media porosities is difficult. Fortunately
asympotes corresponding to limiting conditions can be
obtained as follows from mass transfer theory. Under the
limiting condition of no fluid flow, η can be derived assuming
particle fluxes solely due to diffusion, or gravitational settling.
When diffusion is the only mechanism for colloid mass transfer
(e.g., for very small size colloids), η equals unity under the
steady state condition.19 At this limit, following the analysis for
an isolated sphere (Sherwood et al.,19 p 215), the Sherwood
number for the Happel model can be derived as follows (see
Supporting Information for detailed derivation):

γ ε
=

−
=

− −
N

2
1

2
1 (1 )

sh (1/3)
(3)

Equation 3 is applicable for the steady-state mass transfer to
collectors under no-flow conditions. Theoretical values for Nsh

from eq 3 were corroborated by the numerical results from
Pfeffer and Happel17 for a porosity range of 0.4−1.0, where
porosity = 1.0 refers to the case of an isolated spherical
collector.
Under the condition where gravitational settling is solely

responsible for colloid mass transfer (e.g., for colloids of large
size or high density), η is entirely dictated by the location of
introduction, such that interception is guaranteed if the colloid
vertical trajectory is within one colloid radius outside of the
projected collector surface. For the Happel model, this yields

η
π

π
ε=

+
= − +

a a

b
N

( )
(1 ) (1 )c p

R

2

2
2/3 2

(4)

where b is the radius of the outer fluid envelope, and NR equals
ap/ac, where ac is the collector radius. It follows that eq 4 is
valid when the colloid size is not greater than the thickness of
the outer fluid shell (i.e., ap ≤ b − ac) and under conditions
when gravitational settling is solely responsible for colloid mass
transfer.
The above two limiting cases for mass transfer yield two

asymptotes that constrain η under low fluid velocity conditions,
provided that convective particle flux is negligible relative to the
diffusion or settling fluxes. Following the analysis by Tien (pp
124−125)14 and using the above limiting relationship for
diffusion (i.e., eq 3), a new diffusion term for the correlation
equation was derived using a definition for the introduced
particle flux that includes both convection and diffusion (see
Supporting Information for detailed derivation). The gravita-
tional term for the correlation equation developed by Nelson
and Ginn6 produced results similar to the limiting case in eq 4,
as illustrated in Figure 4, and was therefore retained. The final
correlation equation thus obtained based on regression to
mechanistic simulation results from the modified hemispheres-
in-cell model under favorable conditions isT
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where NLo = H/(9πμap
2U); H is the Hamaker constant.

Predictions from eq 5 (Figure 4) agree with simulated η values
from the underlying trajectory model for a large range of fluid
velocity (0.04−4 m/day), colloid size (40 nm to 10 μm
diameter), and porosity (0.25−0.37). Compared to all prior
correlation equations (Table 2), eq 5 extends the applicable
range in Peclet number to 0−10 000 (the upper limit is
constrained by laminar flow regime).
Although eq 5 avoids superunity η values at low fluid

velocities (or low Peclet numbers), we suggest that this
equation should be used in conjunction with the above-
mentioned asympotes to predict η, as illustrated in Figure 4.
Discontinuities may exist between the predictions from eq 5
and the asymptotes under particular conditions (e.g., especially
at very high porosity). Notably, the crossing of the predicted
trends at 0.04 and 0.4 m/day (Figure 4b) for very small colloid
sizes is an artifact solely from eq 5, not from the mechanistic
model simulations.

4. IMPLICATIONS

An important consideration for employing correlation equa-
tions under conditions where η approaches unity (e.g., at very
low fluid velocities) is the retention of almost all colloids in the
unit collector. Under these conditions, colloid−colloid
interactions likely become a predominant control on colloid
retention, regardless of whether they are unfavorable (possibly
leading to blocking), or favorable (possibly yielding ripening).
Essentially, the “clean bed” assumption is violated when η
approaches unity. Hence, the low fluid velocity condition
represented by correlation equations may be largely hypo-
thetical, since blocking and/or ripening, which probably will
exist in experimental systems, are not represented in these
equations.
In summary, while eq 5 above represents an improvement for

predicting η under a wider variety of fluid velocities than
represented by previous correlation equations, we do not
consider it a major improvement, but rather a useful
clarification. In fact, all existing correlation equations basically
agree (within a factor of 2) except for conditions of unusual
porosity,10 or very low fluid velocity,6 with the latter being a
largely hypothetical application due to expected violation of
clean bed conditions. Furthermore, all existing correlation
equations (to date) succeed only under favorable conditions; so
our next goal will be developing correlation equations that may
be applicable under unfavorable experimental conditions
(colloid−collector repulsion present).
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